首页> 外文OA文献 >Improving Estimations in Quantile Regression Model with Autoregressive Errors
【2h】

Improving Estimations in Quantile Regression Model with Autoregressive Errors

机译:用自回归方法改进分位数回归模型的估计   错误

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

An important issue is that the respiratory mortality may be a result of airpollution which can be measured by the following variables: temperature,relative humidity, carbon monoxide, sulfur dioxide, nitrogen dioxide,hydrocarbons, ozone and particulates. The usual way is to fit a model using theordinary least squares regression, which has some assumptions, also known asGauss-Markov assumptions, on the error term showing white noise process of theregression model. However, in many applications, especially for this example,these assumptions are not satisfied. Therefore, in this study, a quantileregression approach is used to model the respiratory mortality using thementioned explanatory variables. Moreover, improved estimation techniques suchas preliminary testing and shrinkage strategies are also obtained when theerrors are autoregressive. A Monte Carlo simulation experiment, including thequantile penalty estimators such as Lasso, Ridge and Elastic Net, is designedto evaluate the performances of the proposed techniques. Finally, thetheoretical risks of the listed estimators are given.
机译:一个重要的问题是呼吸道疾病的死亡可能是空气污染的结果,可以通过以下变量进行测量:温度,相对湿度,一氧化碳,二氧化硫,二氧化氮,碳氢化合物,臭氧和微粒。通常的方法是使用普通最小二乘回归对模型进行拟合,该模型具有一些假设,也称为Gauss-Markov假设,该误差项表示回归模型的白噪声过程。但是,在许多应用程序中,尤其是对于此示例,这些假设无法满足。因此,在这项研究中,使用分位数回归方法使用上述解释变量对呼吸道死亡率进行建模。此外,当误差是自回归时,还可以获得改进的估算技术,例如初步测试和收缩策略。设计了蒙特卡罗模拟实验,包括诸如Lasso,Ridge和Elastic Net之类的分位数罚分估计器,以评估所提出技术的性能。最后,给出了所列估计量的理论风险。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号